AP 390: Bewegungstraining

Ansprechperson: Prof. Dr. Frank Steinicke

Regelmäßige körperliche Aktivität hat nachweislich zahlreiche gesundheitliche Vorteile, indem sie hilft, Krankheiten vorzubeugen und das allgemeine körperliche und psychische Wohlbefinden zu verbessern. Sie trägt z. B.  zu einer Verringerung des Risikos einer klinischen Depression und zur Minderung von Angstsymptomen bei. Mehr als ein Viertel der erwachsenen Weltbevölkerung ist jedoch nicht ausreichend aktiv, wobei ältere Erwachsene einen größeren Anteil an bewegungsarmen Personen ausmachen. Dieses Projekt befasst sich daher mit der Frage, wie ältere Menschen dazu motiviert werden können, häufiger und effizienter Sport zu treiben, und dabei unterstützt werden können, Bewegungsgewohnheiten leichter in ihren Tagesablauf zu integrieren.

Das KI-SIGS AP 390 arbeitet daran, Elemente der Gamifizierung mit intelligenten virtuellen und robotischen Agenten in Bewegungstrainingssysteme zu integrieren, die den Nutzerinnen und Nutzern  durch den Einsatz von Algorithmen zur Bewegungserkennungein spezifisches Feedback zu ihren Bewegungen geben können. Dieses System bietet großartige Möglichkeiten – nicht nur für die individuellen Trainingsbedürfnisse der einzelnen Nutzerinnen und Nutzer zu Hause, sondern auch für den Einsatz in therapeutischen Umgebungen.


Um den zuvor ermittelten Anforderungen der Zielgruppe gerecht zu werden, wurden die Hauptkomponenten des Systems iterativ verfeinert. Dazu zählen die Weiterentwicklung des Game Designs, des Roboters und der virtuellen Agent*innen. Die Entwicklung von Algorithmen zur Bewegungserkennungein folgt einem ähnlichen Prozess, der reale und simulierte Nutzerdaten einbezieht. Die Integration aller Systeme ist im Gange. Gleichzeitig sind Evaluationen des Prototypen mit unserer Zielgruppe in Planung.

 

 

Visualisierung der Komponente zur Posenschätzung in der Bewegungserkennungs-Pipeline
 

 

Prototyp eines VR-Exergames mit dem Quest 2-System

 

Laufende Evaluationen mit der Zielgruppe umfassen Interviews und Umfragen,  um qualitative und quantitative Daten zu Bereichen wie Gamification, Interaktionen mit Agent*innen und allgemeiner Benutzerfreundlichkeit des Systems zu erhalten. Die fachkundige Auswertung der Trainingsdaten während der Bewegungserfassung und Videoaufzeichnung stellt sicher, dass das System ein genaues Feedback liefert. Summative Evaluationen (hauptsächlich mit dem HzHG) konzentrieren sich auf die Benutzerfreundlichkeit des Prototyps. Insbesondere Faktoren wie Akzeptanz, Spaß, Immersion und Motivation sollen evaluiert werden.